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Not all computing problems are created equal. The inherent complexity of processing certain

classes of problems using digital computers has inspired the exploration of alternate com-

puting paradigms. Coupled oscillators exhibiting rich spatio-temporal dynamics have been

proposed for solving hard optimization problems. However, the physical implementation of

such systems has been constrained to small prototypes. Consequently, the computational

properties of this paradigm remain inadequately explored. Here, we demonstrate an inte-

grated circuit of thirty oscillators with highly reconfigurable coupling to compute optimal/

near-optimal solutions to the archetypally hard Maximum Independent Set problem with over

90% accuracy. This platform uniquely enables us to characterize the dynamical and com-

putational properties of this hardware approach. We show that the Maximum Independent

Set is more challenging to compute in sparser graphs than in denser ones. Finally, using

simulations we evaluate the scalability of the proposed approach. Our work marks an

important step towards enabling application-specific analog computing platforms to solve

computationally hard problems.
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While digital computing—the work-horse of modern
information technology—provides a powerful com-
puting framework, different problems have different

computational complexities. There are certain problems—com-
monly known as NP-hard problems—that are still considered
intractable to solve using digital machines, and require expo-
nentially increasing resources for increasing sizes of the input.
Moreover, many practical problems in physics (e.g., ground-state
problem of spin-glasses1), bioinformatics (e.g., protein folding2,
medical imaging3), combinatorial optimization (e.g., scheduling4,
traveling salesman problem5), circuit design (e.g., field pro-
grammable gate array (FPGA) routing6) among others belong to
this class of computational complexity. This has naturally moti-
vated the quest to explore beyond-digital computing fabrics7–9

including dynamical systems to address this increasingly valuable
class of problems.

In this work, we design and fabricate an integrated circuit (IC) of
30 relaxation oscillators with reconfigurable coupling to explore the
properties of this dynamical system for computing the proto-
typically hard maximum independent set (MIS) problem. Combi-
natorial optimization problems like computing the MIS entail
finding the optimal value of a function in a discrete or combina-
torial domain set. Specifically, the MIS problem is NP-hard10

implying that even the best deterministic algorithms and hardware
implementations (including the dynamical system proposed here)
may result in searching the entire high-dimensional solution space
for at least some problem instances. It is believed that dynamical
systems such as Hopfield networks11, spiking neurons12, cellular
automata13, coupled oscillators14–16—the focus of the present work,
as well as other implementations17–20 can search the solution in a
highly parallel fashion21, and hence, could potentially solve or
approximate such problems efficiently.

However, the physical implementation of analog systems such
as synchronized oscillators must contend with design challenges
related to noise and stability; this has traditionally been a sig-
nificant advantage for digital computing. Analog computing was
explored in the 1950s22,23 but was largely abandoned for digital
information processing owing to its better noise immunity and the
then relatively immature (analog) process technology24. However,
with dramatic strides in process control and the inherently rele-
vant computational properties of such systems25–33, we revisit the
analog approach for solving hard computational problems by
using coupled oscillatory systems34–37.

The concept of computing using oscillators has experienced
renewed interest owing to the emerging device technologies that
promise potentially compact oscillator implementations38–45. For
instance, researchers recently demonstrated the ability to perform
vowel classification using the frequency synchronization char-
acteristics of four coupled spin transfer torque (STT) oscillators46.
Further, J. Chou et al.47 and T. Wang et al.48 demonstrated the
ability to compute the Max-Cut using LC oscillators. Similarly,
other emerging technologies such as insulator–metal phase
transition oxide (example, VO2

49–52
, TaOx

53, NbOx
54)-based

oscillators have also been used to explore the computational
properties of coupled oscillators. While these works are promis-
ing55–57, the currently nascent nature of their underlying device
technologies has constrained the system size and reconfigurability
owing to inherent variability and limited process control58–60.
Consequently, this has limited the experimental exploration and
understanding of the coupled oscillator dynamics in larger sys-
tems. Therefore, in this work, we leverage the highly mature
CMOS process technology to demonstrate a 30 relaxation oscil-
lator platform with reconfigurable connectivity, and subsequently,
characterize its ability to solve the prototypically hard maximum
independent set (MIS) problem. In contrast to our earlier work
with VO2 oscillators49, the larger oscillator system demonstrated

here using the CMOS-based Schmitt trigger oscillators uniquely
enables us to evaluate the computing properties in a larger system
as well as investigate the effect of various parameters such as
average connectivity on the computational characteristics.

Results
Computing the MIS using coupled oscillators. The MIS of a
graph, G (V, E) (V: Vertices; E: Edges), is defined as the largest
subset of nodes having no edges amongst them. The MIS problem
is a prototypical combinatorial optimization problem with
extensive applications in coding theory61, resource allocation62,
molecular biology63, and VLSI design64 (Fig. 1). To compute the
MIS using the coupled oscillators, we configure the oscillator
network such that every node of the input graph is represented by
an oscillator, and every edge by a coupling capacitor. As
demonstrated in our prior work49, this results in a unique circular
phase ordering (Fig. 1) such that the vertices (nodes) belonging to
an independent set of the graph appear adjacent to each other
(see Supplementary Note 1). Subsequently, the phase ordering
can be sorted into independent sets wherein the largest such set
approximates the solution to the MIS. For the sample graph
considered in Fig. 1, the bottom panel shows the experimentally
observed time-domain waveform and the corresponding circular
ordering (here, …1, 4, 6, 3, 2, 5, 1, 4…) of the oscillator phases.
Subsequently, this phase order can be divided into independent
sets: {1,4,6}, {3}, {2,5} by identifying adjacent nodes in the
ordering that have an edge. The largest independent set {1,4,6}
approximates the MIS.

Coupled oscillator hardware. We aim to experimentally explore
the computational properties of the coupled oscillators over a
broad range of network size, connectivity, and patterns. To
facilitate this investigation, we develop an IC, using the bulk
CMOS 65 nm technology, consisting of 30 programmable
relaxation oscillators which can be capacitively coupled to each
other in any arbitrary configuration, i.e. each oscillator can be
coupled to any and all of the oscillators in the network (Fig. 1)
(see Supplementary Note 2 for details of the IC). As discussed
earlier, the mature CMOS technology enables us to characterize
the close-to intrinsic computational characteristics of this analog-
computing paradigm without being impeded by factors such as
large variability and limited endurance. Each oscillator is imple-
mented using a Schmitt trigger inverter where the oscillations are
stabilized using negative RC feedback. Furthermore, each oscil-
lator is equipped with a current starver circuit (implemented at
the header and footer) to modulate the quiescent point and the
operating frequency. The reconfigurable capacitive coupling
architecture is implemented using a 30 line (=number of oscil-
lators) bus along with transmission gate (T-gate)-based switches
that facilitate programmable ‘all-to-all’ connectivity among the
oscillators. This essentially enables us to map the adjacency
matrix, A (which specifies the edges between the nodes) of any
arbitrary graph (up to 30 nodes) directly on to the physical
hardware. Other peripheral blocks of the oscillator platform
include: (a) serial-in parallel-out (SIPO) registers to program to
the oscillators, and coupling capacitors; (2) Schmitt trigger
inverter-based hysteretic output buffer to digitize the output of
each oscillator while preserving the phase and frequency infor-
mation; (3) 32:1 multiplexer to read the (buffered) oscillator
output; the MUX reduces the number of I/O pads required to
measure the output. The output of one oscillator is read directly
from the IC and is considered as a reference for comparing
the phase.

To process a graph using this platform, the oscillators and the
coupling elements are programmed to represent the nodes and
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the edges of the input graph, respectively; the number of
oscillators corresponds to the number of rows (or columns) of
A (Fig. 1), whereas each element of the matrix Aij represents an
edge between node i and j; Aij= Aji= 1 denotes the presence of
an edge, whereas Aij=Aji= 0, symbolizes the absence of an edge.

Therefore, each row of the matrix is formulated as a binary bit-
stream and passed onto the SIPO register for programming the
coupling elements. Since the steady-state phase ordering of the
oscillators encodes the solution, the phase of each oscillator is
read (through the 32:1 MUX) by comparing it to the phase of the
reference oscillator whose output is measured directly from the
IC. Subsequent processing such as partitioning the circular
ordering into independent sets is performed using software.

Computational characteristics of the coupled oscillators. We
experimentally test randomly generated graph instances of vary-
ing size (V= 5, 10, 15, 20, 25, 30) and average connectivity (η=
0.2, 0.4, 0.6, 0.8); three graphs are tested for every combination of
(V, η). Average connectivity (η) is defined as the ratio of the
number of edges in the graph to the total number of edges in an
all-to-all connected graph of the same size. Figure 2a shows
bubble plots comparing the MIS solutions obtained using the

coupled oscillators, and the traditional Bron–Kerbosch (B–K)
algorithm which guarantees an optimal MIS solution, when it
converges. It can be observed that the solution to most of the
analyzed graph instances lies near—or on the identity line (i.e.
y= x) implying that the oscillator system computes an MIS that is
close to the optimal solution computed by the B–K algorithm.
Analysis shown in the inset of Fig. 2b reveals that the oscillators
compute an optimal MIS solution in 71% of the tested graphs,
while computing an approximate solution within 1 node of the
optimal MIS in >90% of the cases. As discussed in the following
sections, the reduction in accuracy primarily arises from the sub-
optimal nature of the solution in sparser graphs (low η) which are
more challenging to solve than graphs with larger edge density—a
fundamental property of the NP-hard MIS problem.

To attain further insights into how the size and the
connectivity of the input graph affect the computational
characteristics of the oscillators, we analyze the quality of the
solution (quantified as the deviation δ (in %) from the optimal
MIS solution) as a function of V, η. It can be observed from
Fig. 3a that the oscillators tend to settle to a sub-optimal
ordering, and thus, compute a sub-optimal MIS for sparser
graphs with lower η, while optimal ordering is observed in
denser graphs. This trend strongly aligns with the observed
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cardinality of the MIS which also increases with the size and the
sparsity of the graph (Fig. 2b). Subsequently, Fig. 3b confirms
the strong dependence of the quality of the solution on the size
of the optimal MIS.

Next, we also explore the evolution of the cluster diameter
(maximum phase difference between two oscillators in the same
cluster) of the largest independent set in the observed phase
ordering (Fig. 3c, d). The cluster diameter signifies the similarity
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of the eigenvalues of the nodes in the independent set cluster (see
Supplement S1). Similar to the optimality trend observed in
Fig. 3a, b, the cluster diameter increases with the sparsity of the
graphs and shows a strong sensitivity to the size of the MIS
(Fig. 3d). We note that the larger standard deviation observed in
Fig. 3c, d can be attributed to the fact that the graphs considered
in the analysis were randomly generated, and thus, have an
arbitrary connectivity pattern. However, similar trends are also
observed in k-nearest-neighbor connected graphs (k= 4 here) as
shown in the Supplementary Note 3. Thus, both the computa-
tional characteristics of the hardware (i.e. cluster diameter) and
the corresponding solution reveal that the oscillator system finds
it more challenging to solve the larger and sparser graphs having
a larger MIS—a validation of the hardness of the problem. In the
context of the oscillator hardware, it is likely that the oscillators
settle into one of the many local minima (corresponding to a sub-
optimal solution) that is energetically close to the global
minimum65.

We also evaluate using simulations, the possibility of scaling
our oscillator approach to compute the MIS in larger graphs (>30
nodes). Using a virtual coupled oscillator platform implemented
in Xyce66, we analyze: (a) randomly generated graph instances
with 64, 128, 160 nodes having a wide range of connectivity (η=
0.2, 0.4, 0.6, 0.8) (Fig. 4a); three graphs are analyzed for each (V,
η); and (b) some graph instances from the DIMACS67 database
up to 256 nodes (Fig. 4b). The simulations reveal that for larger
graphs (specifically with high sparsity), the oscillators can yield a
lower quality sub-optimal MIS solution; we observe empirically
that the phase sequence tends to omit a few nodes of the optimal
MIS solution. We, therefore, implement a simple scheme of
expanding the largest observed independent set from the phase
sequence to achieve a significant improvement in the MIS
solution. The proposed post-processing scheme is discussed in

detail in the Supplementary Note 4. As revealed in Fig. 4a we
observe that with post-processing, we achieve near-optimal/
optimal MIS solutions in the randomly generated graphs; optimal
MIS solutions are achieved in 64% of the graphs, and solutions
that are sub-optimal by up to one node are observed in ~90% of
the analyzed graphs (similar to those observed in experiment). A
comparison with other computational approaches for solving the
MIS problem is shown in Supplementary Note 5. Furthermore,
the oscillators compute an optimal solution in all except one of
the DIMACS graphs analyzed here. This suggests that the coupled
oscillator-based computing approach can be potentially scaled
further through hardware-algorithm co-design although the effect
of noise and the implementation and optimization of the
coupling architecture will play a crucial role in system scalability.

Discussion
The coupled oscillator platform demonstrated here facilitates a
potentially scalable non-Boolean approach to problems that are
considered computationally hard to solve on digital platforms.
Our work demonstrates, using experiment and simulation, that
the rich spatio-temporal dynamics of the coupled oscillators can
be leveraged to compute (near-) optimal solutions to challenging
optimization problems such as computing the MIS of a graph.
Furthermore, since other hard optimization problems such as
maximum clique68, minimum vertex cover69, minimum vertex
coloring70 can be reduced to the MIS problem, our work provides
a pathway to the realization of a non-Boolean hardware accel-
erator for a broader class of computationally challenging opti-
mization problems.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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